
Journal of Sound and <ibration (2001) 240(4), 747}764
doi:10.1006/jsvi.2000.3255, available online at http://www.idealibrary.com on
PARAMETRIC INSTABILITY OF A BEAM UNDER
ELECTROMAGNETIC EXCITATION

C.-C. CHEN

Department of Mechanical Engineering, Dahan Institute of ¹echnology, Hualien 971, ¹aiwan,
Republic of China

AND

M.-K. YEH

Department of Power Mechanical Engineering, National ¹sing Hua;niversity, Hsinchu 30043 ¹aiwan,
Republic of China. E-mail: mkyeh@pme.nthu.edu.tw

(Received 3 April 2000, and in ,nal form 10 August 2000)

The parametric instability of a beam under electromagnetic excitation was investigated
experimentally and analytically. In experiment an electromagnetic device, acting like
a spring with alternating sti!ness, was designed to parametrically excite the beam. The
frequency and the amplitude of the excitation force were accurately controlled by the AC
current #owing through the coil of the electromagnetic device. Since the excitation force is
a non-contact electromagnetic force which acts on the beam in the transverse direction, the
disturbances induced by the geometric imperfection of the beam, by the eccentricity of the
usual axial excitation force, and the coupling e!ects between the excitation mechanism and
the beam were e!ectively avoided. The dynamic system was analyzed based on the
assumed-modes method. The instability regions of the system were found to be the functions
of the modal parameters of the beam and the position, the sti!ness of the electromagnetic
device for various cantilevered beams. The modal damping ratios of the beam specimens
were also identi"ed. The experimental results were found to agree well with the analytical
ones.
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1. INTRODUCTION

The parametrically excited instability of structural elements has been studied considerably
in recent years. Bolotin [1] summed up this problem of various structural elements in his
book. Extensive bibliographies on this subject were also given by Evan-Iwanoski [2] and
Nayfeh and Mook [3]. Essentially, the governing equation of parametric excitation
problem can be expressed as the Mathieu}Hill equation. Some researchers [4}8] used
analytical methods to solve the Mathieu}Hill equation with di!erent conditions. Iwatsubo
et al. [9, 10] used numeric simulation procedures to examine the instability regions of the
Mathieu}Hill equation.

On the investigation of beams or columns, many studies focused analytically or
numerically on the instability behavior of systems with various boundary conditions,
various excitation methods, and various material properties. Iwatsubo et al. [9}11]
examined numerically the parametric resonances of a beam with various boundary
conditions under the excitation of a periodic axial or tangential loading at one end. Evensen
and Evan-Iwanowski [12] investigated analytically the principal resonance of a simply
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supported column subjected to a periodic axial loading at one end; they discussed the
e!ects of longitudinal inertia upon the parametric response of the column. Sato
et al. [13] studied the variation of the instability regions induced by the weight and
position of a concentrated mass on a simply supported beam. Yeh and Chen
[14] investigated analytically a general column under a periodic load in the direction of
the tangency coe$cient at any axial position; they gave the physical explanations of
the parametric resonances by viewing the system energy. Handoo and Sundararajan
[15] studied the principal instability regions of cantilevered columns having longi-
tudinal inertia and end mass. Elmaraghy and Tabarrok [16] examined the
dynamic resonances of a beam with clamped ends under an axial oscillation at one
end. Saito and Koizumi [17] and GuK rgoK ze [18] investigated the instability phenomena
of a simply supported beam carrying a concentrated mass at one end and subjected
to an axial oscillation at the other end. Bu$nton and Kane [19] examined numerically
the parametric instability of a beam that periodically oscillated between two "xed
simply supported points. GuK rgoK ze [20] investigated the dynamic instability of a pre-
twisted beam subjected to a pulsating axial force for various types of boundary conditions.
Chen and Yeh [21] assessed the simple and combination resonances of a general column
carrying an axially oscillating mass. Stevens and Evan-Iwanowski [22] and Cederbaum
and Mond [23] investigated the instability properties of viscoelastic columns
under a periodic axial loading. GuK rgoK ze [24] studied the parameteric behavior of
a viscoelastic beam subjected to a steady axial load and a transverse displacement
excitation at one end. Ray and Kar [25, 26] examined numerically the parametric
instability of multi-layered sandwich beams and partially covered sandwich beams under
a periodic axial loading.

However, few studies have been made on the experimental observation of the insta-
bility behavior of beam or column systems. Bolotin [1] examined experimentally
the principal instability region at twice the fundamental frequency of a simply supported
column subjected to a periodically axial force at one end. Iwatsubo et al. [10] studied
experimentally the simple and combination resonances of clamped}clamped and clamped
simply supported columns under a periodic axial load. Evensen and Evan-Iwanowski [12]
experimentally observed the principal simple resonance of an elastic simply supported
column under a periodically axial end loading with the e!ects of longitudinal inertia.
Handoo and Sundararajan [15] experimentally investigated the simple resonance of
a cantilevered column with an end mass subjected to speci"ed axial motion at its "xed end.
Stevens and Evan-Iwanowski [22] observed the principal instability region of a viscoelastic
simply supported column under a periodically axial force.

The experimental studies mentioned above focused on the systems subjected to
a &&periodically axial loading'' or &&periodically axial motion''. The instability regions of these
problems are obviously disturbed by the initial curvature of the beam or column axis, the
coupling e!ects between the excitation mechanism and the specimen, and the eccentricity of
the longitudinal force [1].

In this work, a new electromagnetic device was developed in experiment to observe the
instability phenomena of a beam under parametric excitation. The advantages of this device
are: (1) the non-contacting electromagnetic excitation force; (2) the excitation force acting on
the beam in the transverse direction; and (3) the accurately controlled frequency and
amplitude of the excitation force by AC power source. Hence, the disturbances induced
from the geometric imperfection of the beam, the eccentricity of the longitudinal force and
the coupling e!ects between the excitation mechanism and the beam were e!ectively
avoided. The experimental results are found to be in good agreement with the analytical
results.
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2. INSTABILITY EXPERIMENT

The instability experiment of a beam excited parametrically was performed using
a self-designed electromagnetic device. The experiment was divided into two major phases:
(1) to identify a relationship between the DC current through the coil and the sti!ness of an
electromagnetic device; and (2) to observe the instability behavior of a beam under
parametric excitation caused by the electromagnetic device. This electromagnetic device,
possessing time-varying sti!ness, acts like an electromagnetic spring applied on the beam
transversely. As shown in Figures 1 and 2, the electromagnetic device consisted of a pair of
magnets and a pair of coils. The pair of magnets were "xed on support connected to the
ground. An enameled wire was wound around a plastic frame to form the coils. The plastic
frame was mounted on the beam and the reliable excitation frequency bandwidth of the
electromagnetic device assured. As the current #ows through the coil, the coil becomes an
electromagnet. The mutual acting forces between the electromagnet and the pair of magnets
make the electromagnetic device function like a spring. When the DC coil current has the
same direction as shown in Figure 1, the mutual acting forces between the electromagnet
and the pair of magnets are repulsive forces. The resultant force acting on the electromagnet
by the pair of magnets tends to push the beam back to the undeformed central line from the
deformed position. In this case, the electromagnetic device has positive sti!ness. When the
DC coil current has the opposite direction to that shown in Figure 1, the mutual acting
forces between the electromagnet and the pair of magnets are attractive forces. The
resultant force acting on the electromagnet by the pair of magnets tends to pull the beam
away from the undeformed central line. The electromagnetic device acts like a spring with
negative sti!ness. Besides, when the coil current is an AC current, the electromagnetic
device becomes a spring with alternating sti!ness. The electromagnetic device was
employed as a &&non-connecting shaker'' to induce parametric excitation on the beam.

2.1. IDENTIFYING SPRING STIFFNESS OF THE ELECTROMAGNETIC DEVICE

Figures 3 and 4 show, respectively, the schematic and the experimental set-up to measure
the natural frequency of the beam specimen by applying a DC coil current. The cantilevered
Figure 1. Schematic of the electromagnetic device.



Figure 2. Electromagnetic device.

Figure 3. Schematic for measuring the natural frequency of specimens.
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beam specimen was equipped with an electromagnetic device powered by a DC source to
supply additional sti!ness to the specimen. An impact hammer with a force transducer was
used to excite the beam specimen. An accelerometer was used to measure the dynamic
behavior of the specimen. Two signal conditioners were used to provide constant current
power to the accelerometer and the force transducer, whose signals were analyzed and
displayed on a dynamic signal analyzer.

Six cantilevered beam specimens, labelled from CF1 to CF6, were used in experiments.
An electromagnetic device, equivalent to a concentrated mass and a variable sti!ness spring
at the connecting point, was mounted on each specimen. The detailed physical dimensions
and properties of each specimen are given in Table 1. The experiments were conducted and
repeated for each specimen at various DC coil currents. The relationship between the
variation of the transverse fundamental frequency of each specimen and the DC coil



Figure 4. Experimental set-up for measuring the natural frequency of specimens.
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currents was measured. Figure 5 shows the relationship between the fundamental frequency
of the beam and the DC coil current of the electromagnetic device for specimen CF5. After
comparing the experimental results with the analytical ones, the relationship between the
sti!ness of the electromagnetic device and the DC coil current was identi"ed. It is noted that
the excitation force was applied lightly enough to avoid the non-linear e!ects resulting from
the deformation of the beam and the relative displacement between the electromagnet and
the magnets.

2.2. OBSERVING THE INSTABILITY BEHAVIOR OF SPECIMEN

Figure 6 shows the experimental set-up to observe the instability behavior of the beam
specimen excited by an electromagnetic device. The electromagnetic device was powered
with an AC source. The dynamic signal analyzer was used to analyze and to display the
signal from the accelerometer. Experiments were conducted for the six specimens listed in
Table 1. The frequency of the AC coil current of the electromagnetic device was "rst tuned
step by step with small increments from the lower limit to the upper limit for the prescribed
bandwidth. At each step, the magnitude of the AC current was tuned slowly from zero up to
a saturation value to observe the dynamic response of the specimen. Since the transverse
vibration amplitude of the specimen was small before instability occurred, the non-linear
e!ects resulting from the deformation of the beam and the relative displacement between
the electromagnet and the magnets were e!ectively avoided. At the onset of instability, the
frequency and amplitude were recorded. The criterion of instability was de"ned as rapidly
increasing amplitude of transverse vibration of the beam resulting from a small increment of
the AC coil current.

The AC power source used in experiment provided AC currents with frequencies ranging
from 45 to 500 Hz. The reliable excitation frequency of the beam was in#uenced by the
mounting rigidity of the coil and coil frame and the thermoelectric e!ects of the coil current
of the electromagnetic device on the bending rigidity of the beam. Reliable experimental
results were obtained within the frequency bandwidth from 45 to about 200 Hz and the coil
current up to 2 A. The specimens examined were divided into two groups in this excitation



TABLE 1

Detailed dimensions and properties of the specimens

Mass of Gap
Mass of Center of coil and Mass between

Length Width Thickness beam coil coil ratio of Dimension of coil No. of magnets
Specimen Material ¸ b t M a frame m

0
/M w]d]h loops of g

no. of beam (mm) (mm) (mm) (g) (mm) m
0

(g) (%) (mm]mm]mm) coil (mm)

CF1 Aluminum 200 30 1)59 26)25 17 3)09 11)8 30]30]5
CF2 Aluminum alloy 375 30)5 4)5 143)33 17 4)00 2)79 30]30]8
CF3 Aluminum alloy 375 30)5 4)5 143)33 100 3)98 2)78 30]30]8
CF4 Aluminum 400 30 1)59 52)50 17 3)09 5)89 30]30]5 30 12
CF5 Aluminum alloy 600 30 3)2 157)08 17 3)97 2)53 30]30]6)5
CF6 Aluminum alloy 600 30 3)2 158)46 230 4)02 2)54 30]30]6)5
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Figure 5. Relationship between fundamental natural frequency and DC coil current for specimen CF5.

Figure 6. Experimental set-up to observe the instability behavior of specimen.
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frequency range. The experiments for the "rst group of specimens, CF1}CF3, were
performed to observe the simple resonances near twice the fundamental frequency, 2u

1
. For

the second group of specimens, CF4}CF6, the simple resonances near twice the secondary
natural frequency near 2u

2
, and the combination resonances, (u

1
#u

2
) and (u

1
#u

3
),

were observed.

3. DYNAMIC INSTABILITY OF A BEAM UNDER TRANSVERSE EXCITATION

The beam with an electromagnetic device, shown in Figure 1, was modelled as a beam
carrying a concentrated mass m

0
and a time-varying sti!ness spring k(t) at point P, as



Figure 7. Dynamic system of a beam with an alternating sti!ness spring in transverse direction.
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shown in Figure 7. The beam has length ¸, mass M, mass per unit length o (x), viscous
damping coe$cient c (x), and bending rigidity E (x)I(x). The neutral axis of the beam is
initially straight. The transverse de#ection of the beam is denoted by v (x, t). In this work, the
beam was assumed to be a Bernoulli}Euler's beam with a small de#ection in the y direction
and small proportional viscous damping. The gravitational e!ects were neglected. When the
spring k(t) is removed, the partial di!erential equation of the system, shown in Figure 7, can
be expressed as

[o (x)#m
0
d (x!x

0
)]

L2v (x, t)

Lt2
#c (x)

Lv(x, t)

Lt
#

L2
Lx2 CE (x)I(x)

L2v(x, t)

Lx2 D"0, (1)

where d (x!x
0
) is a unit impulse function, and x

0
is the x-co-ordinate of point P. Using the

assumed modes method [27], the transverse de#ection of the beam v(x, t) can be expressed
as

v (x, t)"
=
+
n/1

/
n
(x)<

n
(t), (2)

where <(t) is a function of time and /
n
(x) is the orthonormal mode shape function which

satis"es

P
L

0

[o (x)#m
0
d(x!x

0
)]/

n
(x)/

m
(x) dx"d

nm
. (3)

The governing equation of the free transverse vibration of the beam with a spring k (t)
becomes

<G
n
(t)#d

n
<Q
n
(t)#u2

n
<
n
(t)#k (t)+

m

/
n
(x

0
)/

m
(x

0
)<

m
(t)"0, (4)

where d
n
is the modal damping coe$cient and u

n
is the undamped natural frequency. With

the non-dimensionalization notations

m"x/¸, q"u
1
t, k

n
"d

n
/2u

1
, u6

n
"u

n
/u

1
, e (q)"k (t)/2Mu2

1
,

f
nm
"M/

n
(x

0
)/

m
(x

0
)"M/

n
(m

0
)/

m
(m

0
). (5)
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One can rewrite equation (4) in the following non-dimensionalization form:

<G
n
(q)#2k

n
<Q
n
(q)#u6 2

n
<
n
(q)#2e(q)+

m

f
nm
<
m
(q)"0, (6)

which is the dynamic equation of the beam with a concentrated mass and a time-varying
spring as shown in Figure 7.

For a system which has constant properties o (x)"o, c(x)"c, E (x)I(x)"EI, the
governing equation of such system contains additionally o!-diagonal viscous damping
terms. However, when m

0
@M, the diagonal viscous damping terms are dominant and the

small o!-diagonal viscous damping terms can be neglected approximately. Under these
conditions, the assumption of proportional damping holds and equation (6) is still valid and
the damping coe$cients k

n
(n"2, 3, 4,2) can be expressed as functions of k

1
.

When the spring has constant sti!ness, e(q)"eO0, the natural frequencies of the beam
shift from u6

n
to u(

n
. This variation of the natural frequencies was used to identify the spring

sti!ness e in experiment. When the spring has alternating sti!ness, e(q)"e cosu6 q, equation
(6) can be rewritten as

<G
n
(q)#2k

n
<Q
n
(q)#u6 2

n
<
n
(q)#2e cosu6 q+

m

f
nm
<
m
(q)"0, n"1, 2,2. (7)

Equation (7) is a Mathieu's equation with parametrically excited terms associated with
modal displacements <

n
. This equation was used to express the dynamic behavior of the

beam subjected to the parametric excitation caused by the alternating sti!ness spring. The
parametric excitation coe$cients f

nm
in equation (7) are functions of the mode shapes /

n
and

of the mass of the beam M. Once the coe$cients f
nm

are found, the instability bandwidth of
the simple and combination resonances of Mathieu's equation (7) can be determined using
the amplitude of the spring sti!ness e, the natural frequencies of the beam u6

n
, u6

m
, and the

instability bandwith parameters G
nm

[21] as follows:
(1) Simple resonance. When the excitation frequency u6 is close to 2u6

n
and the instability

bandwidth parameter G
nn

de"ned as

G
nn
"G

( f
nn

/u6
n
)2!4(k

n
/e)2,

( f
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/u6
n
)2,

k
n
O0,

k
n
"0,

(8)

the transition curves separating stable and unstable regions are

u6 "2u6
n
$eG1@2

nn
for G

nn
'0. (9)

(2) Combination resonance of sum type. When the excitation frequency u6 is near u6
n
#u6

m
and the instability bandwidth parameter G
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the transition curves separating stable and unstable regions are
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(3) Combination resonance of di+erence type. When the excitation frequency u6 is near
u6
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m
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the transition curves separating stable and unstable regions are

u6 "u6
n
!u6

m
$eG1@2

nm
for G

nm
'0. (13)

For the dynamic system considered in Figure 7, all the parametric excitation coe$cients
f
nm

in equation (7) are of symmetric form. Therefore, the combination resonance of
di!erence type does not occur. Moreover, the critical excitation amplitude is de"ned as [11]

e
cr
"(k

n
k
m
/G

nm
)1@2, (14)

which is a minimum value of excitation amplitude, below which the system is always stable.
The viscous damping ratios of the system can be identi"ed from e

cr
.

4. RESULTS AND DISCUSSION

Figure 8 shows the relationship between the non-dimensionalized spring sti!ness e and
the DC coil current I of the electromagnetic device for specimen CF1. The
non-dimensionalized spring sti!ness e is de"ned in equation (5) as e"k/2Mu2

1
. The data

points were obtained using equation (6) to analytically tune the spring sti!ness e for the
same measured transverse fundamental frequency as a DC current #owing through the coil
of the electromagnetic device. Figure 8 shows that the spring sti!ness e and the DC coil
current I have a good linear correlation. The proportionality between the spring sti!ness
e and the DC coil current I was found by the curve-"tting technique. The ratios e/I of
specimens CF2}CF6 also possess good linearity as that of CF1. The ratios between the
spring sti!ness e and the DC coil current I of all specimens and the "rst three natural
frequencies of the specimens without an electromagnetic device (zero DC coil current) are
presented in Table 2.

Physically, the ratio between the spring constant k and the coil current I of the
electromagnetic device depends on the gap between the two magnets, the beam thickness,
the dimension and loop numbers of the coil, and the relative position of the coil to the
magnets. In experiments, the gap of magnets and the loop numbers of the coil were kept
constant; thus, the ratio k/I remained almost the same when the thickness of the beam was
constant. However, as de"ned in equation (5), the non-dimensionalized spring sti!ness e is
Figure 8. Relationship between spring sti!ness and DC coil current for specimen CF1.



TABLE 2

Modal parameters of the specimens

Non-dimensionalized Experimental natural Non-dimensionalized Theoretical ratios Experimental modal damping
theoretical natural frequencies of experimental natural of modal coe$cient k

1
(from critical

frequencies of specimens frequencies of specimens damping excitation amplitude e
cr

of various
specimens (Hz) (Hz) coe$cients resonance modes)

Specimen Ratio
no. u6

1
u6

2
u6

3
u

1
u

2
u

3
u6

1
u6

2
u6

3
k
2
/k

1
k
3
/k

1
e/I 2u

1
u

1
#u

2
2u

2
u

1
#u

3

CF1 1 6)922 20)17 27)875 187)5 554 1 6)726 19)87 1)1436 1)2238 0)0990 0)0045
CF2 1 6)372 18)04 24)875 158)25 447 1 6)362 17)97 1)0255 1)0445 0)0233 0)012
CF3 1 6)394 17)58 25)50 163)0 450 1 6)392 17)65 1)0351 1)0019 0)0235 0)0076
CF4 1 6)500 18)59 7)375 48)0 135)5 1 6)508 18)37 1)0428 1)0752 0)6953 0)012 0)012 0)011
CF5 1 6)338 17)89 6)875 43)625 123)0 1 6)345 17)89 1)0412 1)0257 0)2505 0)015 0)014 0)019
CF6 1 6)246 17)52 7)20 45)25 126)5 1 6)285 17)57 0)9935 0)9955 0)2334 0)008 0)012 0)011
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equal to k/2Mu2
1

and the ratio e/I is inversely proportional to the value (Mu2
1
) of the beam

with constant thickness. From Tables 1 and 2, beam specimens CF2 and CF3 have the same
thickness and the close corresponding (Mu2

1
) values; therefore, the ratios e/I of CF2 and

CF3 are almost the same. Similarly, the ratio e/I of CF5 and CF6 are roughly the same, too.
However, the (Mu2

1
) ratio between CF1 and CF4, (Mu2

1
)
CF1

/(Mu2
1
)
CF4

, is roughly equal to 7,
thus the corresponding ratio (e/I)

CF1
D/(e/I)

CF4
is almost equal to 1/7.

It is noted that the electromagnetic device possesses either positive or negative sti!ness,
and the spring sti!ness can be adjusted by the current #owing through the coil. As the
electromagnetic device is connected to a structure, it can add or remove sti!ness from that
structure. In other words, the electromagnetic device can be employed to regulate the
natural frequency of a structure. This property is useful in the vibration suppression of
structures.

According to the available frequency range in experimental set-up, the instability
behavior of the specimens CF1}CF3 was observed on the transition curves of the simple
resonance near twice of the fundamental frequency, 2u6

1
. The instability behavior of

specimens CF4}CF6 was observed on the transition curves of the simple resonance near
twice of the secondary natural frequency, 2u6

2
, and the combination resonance near

(u6
1
#u6

2
) and (u6

1
#u6

3
). The analytical results of the transition curves of the simple and

combination resonances of the six specimens with various viscous damping coe$cients are
also presented. As mentioned in the previous section, the modal damping coe$cients k

n
can

be expressed as functions of k
1
. The theoretical ratios of k

2
/k

1
and k

3
/k

1
are given in

Table 2.
Figures 9}14 show the instability regions of the specimens CF1}CF6 respectively. The

analytical results of the transition curves of the simple and the combination resonances with
various viscous modal damping coe$cients k

n
are shown with the experimental results. The
Figure 9. Instability regions of specimen CF1:**, analytical results (from bottom up k
1
"0, 0)01, 0)02, 0)03,

0)04 and 0)05); ) ) ) ) ) ), experimental data.



Figure 10. Instability regions of specimen CF2:**, analytical results (from bottom up k
1
"0, 0)01, 0)02, 0)03,

0)04 and 0)05); ) ) ) ) ) ), experimental data.

Figure 11. Instability regions of specimen CF3: **, analytical results (from bottom up k
1
"0, 0)005, 0)01,

0)015, 0)02 and 0)025); ) ) ) ) ) ), experimental data.
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Figure 12. Instability regions of specimen CF4:**, analytical results (from bottom up k
1
"0, 0)01, 0)02, 0)03,

0)04 and 0)05); ) ) ) ) ) ), experimental data.
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Figure 14. Instability regions of specimen CF6.**analytical results (from bottom up k
1
"0, 0)005, 0)01, 0)015,

0)02 and 0)025); ) ) ) ) ) experimental data.
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cases with experimental points on the transition curves are also magni"ed in Figures 9}14.
In Figures 9}14, the experimental results and the analytical ones are in good agreement
which results from the non-contacting nature of the electromagnetic device acting
transversely on the beam in experiments. Moreover, using equation (14), the modal
damping coe$cient k

1
of CF1}CF6 can be identi"ed and the results are given in Table 2.

The disturbances, occurring usually in &&periodically axial loading'' or &&periodically axial
motion'', induced by the geometric imperfection of the beam, the eccentric e!ects of the axial
excitation force and the coupling e!ects between the specimen and the excitation
mechanism, can be e!ectively avoided.

Moreover, the amplitude of the excitation current was limited to 2 A to avoid
overheating the coil and the non-linearity of the transition curve resulting from high
loading amplitude was neglected. Table 3 shows the deviation of the present instability
bandwidth at various resonant frequencies when compared with the instability bandwidth
including the second order term derived by Nayfeh and Mook [3] at speci"ed excitation
amplitude. The results obtained from the "rst order expansion are much simpler than those
including the second order term. In Table 3, larger deviations occurred for specimen CF4,
which was under larger speci"ed excitation amplitude. For example, the instability
bandwidth of the "rst order expansion of CF4 shifted 7)6% to the left when compared with
b

Figure 13. Instability regions of specimen CF5:**, analytical results (from bottom up k
1
"0, 0)01, 0)02, 0)03,

0)04 and 0)05); ) ) ) ) ) ), experimental data.



TABLE 3

Deviation of instability bandwidth between the ,rst and second order expansion at speci,ed
excitation amplitude

b/a]100%
Specimen Max. excitation

no. amplitude e
max

2u
1

(%) 2u
2

(%) u
1
#u

2
(%) u

1
#u

3
(%)

CF1 0)11 !1)8 0)33 0)94 0)58
CF2 0)05 !1)3 0)27 0)38 0)23
CF3 0)05 !0)53 0)15 0)48 0)03
CF4 1)0 !23 4)8 7)6 4)3
CF5 0)5 !14 3)0 3)3 2)1
CF6 0)5 4)7 1)0 0)28 0)46

} } } }First order expansion (present)
u6 "u6
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Figure 15. Transition curves of specimen CF4 at frequency (u6
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that of the second order expansion for the combination resonance near (u6
1
#u6

2
) at

excitation amplitude e"1)0. Figure 15 shows the transition curves of this case together
with the experimental data of specimen CF4. Although the results including the second
order term are closer to the experimental ones, the results of the "rst order expansion also
agree well, especially for the cases with smaller excitation amplitude.

5. CONCLUSIONS

An electromagetic device, acting like an alternating sti!ness spring, was developed to
examine the parametric instability regions of a beam. The experimental results are found to
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agree well with the analytical ones. The viscous modal damping coe$cients of the
specimens can be identi"ed from the experimental results. This technique is a potentially
good tool in the experimental investigation of parametric instability behavior of various
structures with various materials. Additionally, it is noted that:

(1) While observing the instability of the specimen, the AC coil current was always tuned
from zero up to the magnitude at the onset of instability. The transverse vibration of
the specimen was easily controlled in small amplitude before the instability occurred;
therefore, the non-linear e!ects resulting from the deformation of the specimen and
the relative displacement between the coil and the magnets of the electromagnetic
device were e!ectively avoided.

(2) Since the non-contacting electromagnetic device possesses either the positive or
negative sti!ness, it can be employed to add or to remove sti!ness from a structure
without changing the structure. This property is useful in the vibration suppression of
structures.
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